現在地
トップ > 電子書籍 > 洋書 > Computers > Neural Networks
InterpretableMachineLearningwithPythonBuildexplainable,fair,androbusthigh-performancemodelswithhands-on,real-worldexamples

Interpretable Machine Learning with Python Build explainable, fair, and robust high-performance models with hands-on, real-world examples (Packt Publishing) [電子書籍版]
Serg Masís

4,304(税込)

商品情報

商品説明

内容紹介

A deep dive into the key aspects and challenges of machine learning interpretability using a comprehensive toolkit, including SHAP, feature importance, and causal inference, to build fairer, safer, and more reliable models. Purchase of the print or Kindle book includes a free eBook in PDF format.

Key Features

  • Interpret real-world data, including cardiovascular disease data and the COMPAS recidivism scores
  • Build your interpretability toolkit with global, local, model-agnostic, and model-specific methods
  • Analyze and extract insights from complex models from CNNs to BERT to time series models

Book Description

Interpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models. Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps. In addition to the step-by-step code, you’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. By the end of the book, you’ll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.

What you will learn

  • Progress from basic to advanced techniques, such as causal inference and quantifying uncertainty
  • Build your skillset from analyzing linear and logistic models to complex ones, such as CatBoost, CNNs, and NLP transformers
  • Use monotonic and interaction constraints to make fairer and safer models
  • Understand how to mitigate the influence of bias in datasets
  • Leverage sensitivity analysis factor prioritization and factor fixing for any model
  • Discover how to make models more reliable with adversarial robustness

Who this book is for

This book is for data scientists, machine learning developers, machine learning engineers, MLOps engineers, and data stewards who have an increasingly critical responsibility to explain how the artificial intelligence systems they develop work, their impact on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a good grasp of the Python programming language is needed to implement the examples.


商品レビュー

楽天Koboのレビュー

まだレビューがありません。 レビューを書く

楽天ブックスランキング情報

  • 週間ランキング

    ランキング情報がありません。

  • 日別ランキング

    ランキング情報がありません。

楽天Kobo電子書籍版

  • 期間限定!イチオシのキャンペーン

最近チェックした商品

    ※表示を削除したい場合は閲覧履歴のページから削除お願いいたします

    ランキング:電子書籍

    ※1時間ごとに更新

    1. 1
      名探偵コナン(107)
      電子書籍名探偵コナン(107)

      青山剛昌

      583円(税込)

    2. 2
      ヤングマガジン 2025年21号 [2025年4月21日発売]
      電子書籍ヤングマガジン 2025年21号 [2025年4月21…

      松本光司

      510円(税込)

    3. 3
      週刊ビッグコミックスピリッツ 2025年21・22合併号【デジタル版限定グラビア増量「田中美久」】(2025年4月21日発売号)
      電子書籍週刊ビッグコミックスピリッツ 2025年21…

      週刊ビッグコミックスピリッツ編集部

      510円(税込)

    4. 4
      シャングリラ・フロンティア(22) 〜クソゲーハンター、神ゲーに挑まんとす〜
      電子書籍シャングリラ・フロンティア(22) 〜…

      硬梨菜

      792円(税込)

    5. 5
      ONE PIECE モノクロ版 111
      電子書籍ONE PIECE モノクロ版 111

      尾田栄一郎

      543円(税込)

    購入データ自動連携!楽天ブックス公式 無料 読書管理パプリ Readee

    このページの先頭へ