商品説明
内容紹介
(概要)
前作の『ITエンジニアのための機械学習理論入門』から、5年経過しましたが、AI(人工知能)や機械学習に対しての期待と関心はまったく衰えません。むしろ機械学習の利用はIT業界で当然のものとなり、さらなる活用がさまざまな場所で行われています。前作では一般的な機械学習について解説しましたが、試行錯誤しながら1つの解をもとめていく「強化学習理論」についてくわしく・やさしく解説します。理論を表現するいろいろな数式とそれらをプログラミングするためのPythonコードを並列しながらその理論の神髄にせまり、強化学習の基礎となるさまざまなアルゴリズムを体系的に学びます。
(こんな方におすすめ)
・機械学習、AI(人工知能)に興味があるITエンジニア、大学生、高専生、高校生など
(目次)
第1章 強化学習のゴールと課題
1.1 強化学習の考え方
1.2 実行環境のセットアップ
1.3 バンディットアルゴリズム(基本編)
1.4 バンディットアルゴリズム(応用編)
第2章 環境モデルを用いた強化学習の枠組み
2.1 マルコフ決定過程による環境のモデル化
2.2 エージェントの行動ポリシーと状態価値関数
2.3 動的計画法による状態価値関数の決定
第3章 行動ポリシーの改善アルゴリズム
3.1 ポリシー反復法
3.2 価値反復法
3.3 より実践的な実装例
第4章 サンプリングデータを用いた学習法
4.1 モンテカルロ法
4.2 TD(Temporal-Difference)法
第5章 ニューラルネットワークによる関数近似
5.1 ニューラルネットワークによる状態価値関数の計算
5.2 ニューラルネットワークを用いたQ-Learning
商品レビュー(1件)
- 総合評価
楽天Koboのレビュー
まだレビューがありません。 レビューを書く
楽天ブックスランキング情報
-
週間ランキング
ランキング情報がありません。
-
日別ランキング
ランキング情報がありません。